

SimpleCV Tutorial

 An easy way to become familiar with SimpleCV is by following the tutorial here. These are basic types of programs which demonstrate the concepts behind working with SimpleCV.

 About

 SimpleCV is an open source framework — meaning that it is a collection of libraries and software that you can use to develop vision applications. It lets you work with the images or video streams that come from webcams, Kinects, FireWire and IP cameras, or mobile phones. It’s helps you build software to make your various technologies not only see the world, but understand it too.

 SimpleCV is free to use, and because it’s open source, you can also modify the code if you choose to. It’s written in Python, and runs on Mac, Windows, and Ubuntu Linux. It’s developed by the engineers at Sight Machine, and it’s licensed under the BSD license.

 Note: These examples are written for SimpleCV version 1.3 or greater. Certain functions may not work in earlier versions. For best results, download the latest version.

 Tutorials

 Index

Index

 About

About

SimpleCV [http://simplecv.org/] is a open source cross platform machine vision framework written
in Python [http://python.org/].

The purpose of the simplecv-tutorial subproject is to learn how to apply
computer vision to practical situations using the tools implemented in the
SimpleCV framework.

The target audience is those new to computer vision but also has the ability
to be extended to more advanced computer vision tasks.

Setup the build tool

To build the HTML or the PDF (requires pdflatex) versions of this tutorial
Sphinx [http://sphinx-doc.org/] (1.0.0+) is needed. You can get from the Python Package Index [http://pypi.python.org/pypi/Sphinx].:

$ sudo pip install -U sphinx

Or use the Package management system of your distribution. For Fedora:

$ sudo yum -y install python-sphinx

For Debian/Ubuntu:

$ sudo apt-get install python-sphinx

Building the tutorial

Switch your simplecv-examples folder and build the html variant:

$ make html

If you want to rebuild make sure you clean first:

$ make clean
$ make html

Auto Building the tutorial

If you are able to push to the master branch at:
http://github.com/ingenuitas/simplecv-examples

Then it should autobuild soon after and be found at:
http://simplecv-examples.readthedocs.org

 Loading a directory of images to use

Loading a directory of images to use

This is something that is very useful all the time when using computer vision.
You may not have a camera readily available but you can easily load a directory
of images to play with.

Sometimes sets of images are nice to have as well. You can find data sets of
similiar things, for instance maybe a bunch of pictures of fruit and you want
to use computer vision to detect the type of fruit based on features that
we define.

Note

Free data sets are available in a list here: http://github.com/sightmachine/SimpleCV/wiki/List-of-know-open-data-sets-for-testing

So what you will need to do is browse the web and download images into
a seperate directory or in the same directory as the script. For this example
the file extensions have to be .png, but you can change the code to .jpg, .bmp, etc.

To load up and show a directory of images lets look at the code:

import os
import glob
import time
from SimpleCV import *

print __doc__

#Settings
my_images_path = "/tmp/cats/" #put your image path here if you want to override current directory
extension = "*.png"

#Program
if not my_images_path:
 path = os.getcwd() #get the current directory
else:
 path = my_images_path

imgs = list() #load up an image list
directory = os.path.join(path, extension)
files = glob.glob(directory)

for file in files:
 new_img = Image(file)
 new_img.show()
 time.sleep(1) #wait for 1 second

Download the script

As you can see it doesn’t take much to load up and start changing files.

 Pycon 2013

Pycon 2013

Below you will find all of the resources for 2013 PyCon tutorial (https://us.pycon.org/2013/schedule/presentation/30/).

This includes the repository where we placed all the examples, the full slide deck, and the video from the conference (https://github.com/sightmachine/simplecv-examples/tree/master/presentations).

If you would like to folllow along grab a copy of the virtual box image we used, or install SimpleCV and clone our tutorial respository.

If you would like us to present this tutorial for a user group or to re-use these materials for education please reach out to us via e-mail or twitter and we would be glad to assist.

To start the notebook change directories to the where you cloned the notebook and run the command

>>> 'simplecv notebook --pylab inline.'

You can view and or download the accompanying slide show here:

http://speakerdeck.com/player/083e55006e4a013063711231381528f7

 Interacting with the Display

Interacting with the Display

This actually isn’t going to take much more work than the standard hello
world example. Except we are introduction a new concept or object type.

The Display.

Note

type help Display from the SimpleCV shell for more help

What the display is doing different than the show() function is that it
allows us to get interaction from it. So it in this case we want our program
to end when the left mouse button is clicked.

To create a display object we literally type:

>>> disp = Display()

Now we will incorporate this into our example:

from SimpleCV import *
cam = Camera()
disp = Display()

while disp.isNotDone():
 img = cam.getImage()
 if disp.mouseLeft:
 break
 img.save(disp)

Download the script

So what is happening here. Is we created a display object. It then checks
it’s function called isNotDone(). That function updates the display and
makes sure to see if any events have occurect, such as in our case the screen
had been clicked on with the left mouse, then update.

So the event is updated and the next time through the while loop we check:

if disp.mouseLeft:

What this is doing is returns true or false depending of if it was clicked.
In the instance that it was actually clicked, then it runs break, which
tells the while() loop at the begin to break the loop, and of course our program
then exits.

 Timing

Timing

When using computer vision something that always has to be accounted for
is processing time. If you are trying to make a person detector and the
vision system can only process one image per 5 seconds then a few people
could walk by the camera in the amount of time it would take to perform
that detection, making it not very useful.

Luckily SimpleCV has something built into the Shell that will help you
tune your programming in order to make things faster.

That function is called timeit.

Lets get a basic idea of how time it works. We will randomly generate a
list of 10,000 numbers.

>>> import numpy.random
>>> randoms = randoms = [random.randint(0,1000) for r in xrange(10000)]
>>> print randoms

As you can see we now have a bit list of random numbers. Now what we want
to do is sort them. First we need to define our sorting algorithm. Keep
in mind we used bubble sort in this example as it is one of the slowest
sorting algorithms, but it was meant to show time differences.:

def bubbleSort(the_list):
 length = len(the_list) - 1
 sorted = False

 while not sorted:
 sorted = True
 for i in range(length):
 if the_list[i] > the_list[i+1]:
 print "sorting"
 sorted = False
 the_list[i], the_list[i+1] = the_list[i+1], the_list[i]

Once our sorting algorithm is defined, we just run:

>>> timeit bubblesort(randoms)

And should get an output similiar too:

>>> timeit bubblesort(randoms)
1000 loops, best of 3: 759 us per loop

So what this did is give us an idea of how long it will take. And as expected
bubble sort is quite slow. So lets do the same thing using a much faster
sorting algorithm called quick sort.

First define the quicksort function:

def qsort(L):
 if len(L)<2: return L
 pivot_element = random.choice(L)
 small = [i for i in L if i< pivot_element]
 medium = [i for i in L if i==pivot_element]
 large = [i for i in L if i> pivot_element]
 return qsort(small) + medium + qsort(large)

One thing that happens while running the sort, is that it does it in-place
so it messes up the randoms array. So lets generate the random lits again but
make a copy to do the work on.

>>> randoms = randoms = [random.randint(0,1000) for r in xrange(10000)]
>>> bubblesort_list = numpy.copy(randoms)
>>> quicksort_lits = numpy.copy(randoms)

Then just run timeit on these functions:

>>> timeit bubblesort(bubblesort_list)
1000 loops, best of 3: 759 us per loop
>>> timeit qsort(quicksort_list)

As you can see the quicksort is much faster. This should work in theory
for any type of function you write or use, so instead of bubblesort it
could be:

>>> img = Image("simplecv")
>>> timeit img.findBlobs()

Download the script

 Writing the Hello World Program

Writing the Hello World Program

The following is the hello world for SimpleCV. What is does is basically
opens up the camera, takes a picture and shows it.

Here is the code:

from SimpleCV import *

cam = Camera()

while True:
 img = cam.getImage()
 img.show()

Download the script

What is going on in this example is the:

from SimpleCV import *

brings in all the SimpleCV library into the namespace. What does that mean?
It means less typing for us but will produce warning when you check your file
with pychecker [http://pychecker.sourceforge.net/] or pylint [https://bitbucket.org/logilab/pylint/]. Usually this is not desirable because it makes
it harder to maintain and debug your scripts.

The same program could also be written as:

import SimpleCV
cam = SimpleCV.Camera()

while True:
 img = cam.getImage()
 img.show()

Ordinarily only importing what you need is the common way to do it:

from SimpleCV import Camera

cam = Camera()

while True:
 img = cam.getImage()
 img.show()

Of course are you free to choose the way that fits best your skills or your
needs. The first method is typically the way we will write the programs, until
you are comfortable enough with using SimpleCV outside of it’s built-in
libraries.

 Detecting a car in a parking lot

Detecting a car in a parking lot

In this example we are going to determine if a particular car is parked
in a certain parking spot. In this scenario a yellow car keeps parking
in the handicapped parking spot even though we aren’t authorized to.

Of course the person doing this is breaking the law, and hasn’t been caught
by the parking attendant. In this case we will use a vision system to monitor
the parking spot.

Here is what the image looks like without the car in the spot:

[image: Photo of parking lot]

Here is what the image looks like with the car in spot:

[image: Photo of car in parking lot]

So a simple test of looking at the two is to look for yellow? We could just
search the whole picture for the color yellow, but if the car is parked in
the spot to the left then they aren’t violating the law. So we only want to check
the image in that particular area. So we are going to crop out that area
and do our image processing for yellow just in that section.

First thing to do is load up the images:

>>> car_in_lot = Image("parking-car.png")
>>> car_not_in_lot = Image("parking-no-car.png")

Download the car image

Download the no car image

We will use the car in the lot picture to determine the area we want to
inspect. The image is 800 by 600 pixels. And the location of the box we
want around the car, sometimes refered to as a region of interest (ROI), starts
at the coordinates 470, 200, and is about 200 by 200 pixels in size.

>>> car = car_in_lot.crop(470,200,200,200)
>>> car.show()

You should get something simliar to the following image:

[image: Photo of car]

But really that’s just about where the car is at, not necessarily just the
car. Well, what we can do now is try to just extract the yellow color.

>>> yellow_car = car.colorDistance(Color.YELLOW)
>>> yellow_car.show()

[image: Photo of car]

As you can see what this did is converted the color image to grey and
made the yellow color really stand out as black. Now it is starting to
get easier for us to extract that color. In fact, now that we have that
image all we want to do is subtract that image from the car image.

>>> only_car = car - yellow_car
>>> only_car.show()

and you should now have something that looks like:

[image: Photo of car]

Now that we have the object extract from color we have to have some way
to measure it. This is very simple with a function called meanColor().

>>> only_car.meanColor()
>>> (25.604575, 18.880775, 4.4940750000000005)

Now that we have those values, let’s do the same for the parking lot without
any cars. Then we will look at the differences in their mean colors as a
way to determine if the car is parked in the lot or not.

>>> car_not_in_lot = Image("parking-no-car.png")
>>> no_car = car_not_in_lot.crop(470,200,200,200)

Which will give an image similiar to:

[image: Photo of empty parking spot]

Then we try to do the color extraction:

>>> yellow_car = no_car.colorDistance(Color.YELLOW)
>>> yellow_car.show()

and should get an image similiar to:

[image: Photo of empty parking spot with color difference]

Then we try and subtract the color again and get the meanColor():

>>> only_car = car - yellow_car
>>> only_car.meanColor()
>>> (5.031350000000001, 3.6336250000000003, 4.683625)

As you can see the mean color differences, when a car is there it is:

(25.604575, 18.880775, 4.4940750000000005)

When a car isn’t there it is:

(5.031350000000001, 3.6336250000000003, 4.683625)

We can then use those values to determine if the car is actually there or not.
Those are the RGB values. So our threshold could be:

If R > 15 and B > 10:
 Car is in the lot!

This is generally pseudo code, but we could have it send an e-mail, etc.

 Drawing on Images in SimpleCV

Drawing on Images in SimpleCV

Most of the time when using a vision system it is nice to have some
form of visual feedback to the user of the vision system that something
has occured when programmed to detect an object. Throughout most of
programming the vision system we have used the command line to output
useful information.

For instance, say we were doing face detection, using the command line
we could print out the location of the face in it’s X,Y coordinates, but
really that is not very useful visually because in our minds converting
that number to an actual location on the screen. It’s much more useful to
say draw a box around the found face.

Fornately SimpleCV has very easy methods for being able to draw, or mark
up the images to notify that something is going on. Before we get into
how to use some of the functionality we’ll talk a little bit about how
things are structured.

In simplecv there is a single “display” object. In turn these means you
can only have a single window open viewing the camera at any single time.
Even though SimpleCV supports multiple cameras, you can only view one at
at time using the standard method, although there are more advanced ways
to do it as well through a web browser, they will not be discussed here.

To show off a simple example, we will talk a little bit about layers.
Very similiar to the concept of layers on an onion. In our case our layers
can be unlimited and what’s ever above or on top of the other layer will
cover the layer below it. Let’s look at the simplecv logo with some text
written on it.

[image: ../_images/display-layers-logo.png]

Which in reality is an image with 3 layers, each layer has the text
displayed. If we rotate the image and expand the layers you can get a
better idea of what is really happening with image layers.

[image: ../_images/display-layers-exploded.png]

Layers

Now that you have an understanding of what layers are, we can now start
to use them within SimpleCV. To get a better understanding of that we
need to take a look at the DrawingLayer class built into SimpleCV. This
class is where all the actual drawing takes place. This is not to be
confused with the Display class as that is used for the actual rendering
of the layers. The DrawingLayer class is used to store all the various
information about things like features that are found, or text being drawn.

To explain the DrawingLayer class more precisely,
DrawingLayer gives you a way to mark up Image classes without changing
the image data itself. This class wraps pygame’s Surface class and
provides basic drawing and text rendering functions

Example:

>>> scv = Image('simplecv')
>>> logo = Image('logo')
>>> scv.dl().blit(logo) #write image 2 on top of image

You should get an image similiar to:

[image: ../_images/display-blit.png]

NOTE: Run help DrawingLayer for more information.

What just happened in the previous example was we added a layer, put
the logo on that new layer, then added that layer to the exist image.
In fact, that’s what the blit() function did in one step, but instead
lets walk through that example.:

>>> scv = Image('simplecv')
>>> size = scv.size()
>>> print size
(118, 118)
>>> print scv._mLayers #this is where all the layers are stored
[<SimpleCV.DrawingLayer.DrawingLayer instance at 0x29afdd0>]
>>> layer1 = DrawingLayer(size)
>>> scv.addDrawingLayer(layer1)
>>> print scv._mLayers
[<SimpleCV.DrawingLayer.DrawingLayer instance at 0x29afdd0>,
<SimpleCV.DrawingLayer.DrawingLayer instance at 0x29b3b90>]

As you can see we now have two layers, and we can continue to add as many
as we would like. In this example the layer isn’t really doing anything.
But let’s continue to extend it to make it actually do something.

>>> logo = Image('logo')
>>> dl = logo.dl()

In this example we are loading up the logo and then loading up it’s
drawing layer. Please note that the dl() function is just a shortcut
to the getDrawingLayer() function.

>>> dl = logo.dl()
>>> dl = logo.getDrawingLayer() #same as above

You can also specify what layer number you are trying to access, so in
the previous example we can see there are two layers:

>>> print len(scv._mLayers)
2
>>> dl = scv.dl(0)
>>> print dl
<SimpleCV.DrawingLayer.DrawingLayer instance at 0x29afdd0>
>>> dl = scv.dl(1)
>>> print dl
<SimpleCV.DrawingLayer.DrawingLayer instance at 0x29b3b90>

Now these drawing layers can be used between images. Let’s take a layer
from one image and apply it to another image.

>>> scv = Image('scv')
>>> logo = Image('logo')
>>> sdl = scv.dl()
>>> ldl = logo.dl()
>>> scv.addDrawingLayer(ldl)
>>> scv.show()

Now you should see something like:

[image: ../_images/simplecv-logo.png]

But wait, that isn’t correct. We just added the logo layer, so it should
be overlayed on top of the simplecv logo. Well this is because nothing
is drawn on that actual layer. The layers are used to actually mark up
the image. For example, you want to draw a box around a face that was
detected in the image.

>>> lenna = Image('lenna')
>>> facelayer = DrawingLayer((lenna.width, lenna.height))
>>> facebox_dim = (200,200)
>>> center_point = (lenna.width / 2, lenna.height / 2)
>>> facebox = facelayer.centeredRectangle(center_point, facebox_dim)
>>> lenna.addDrawingLayer(facelayer)
>>> lenna.applyLayers()
>>> lenna.show()

Now you should get an image similiar to:

[image: ../_images/display-lenna-facebox.png]

Using this we are able to draw many various types of objects, for instance
a circle.

>>> circlelayer = DrawingLayer((lenna.width, lenna.height))
>>> circlelayer.circle(center_point, 10)
>>> lenna.addDrawingLayer(circlelayer)
>>> lenna.applyLayers()
>>> lenna.show()

And now you should get something like:

[image: ../_images/display-lenna-boxcircle.png]

Now we can use that layer from the lenna image on another image. So if
we use

>>> scv = Image('simplecv')
>>> scv.addDrawingLayer(circlelayer)
>>> scv.applyLayers()
>>> scv.show()

You will notice you just get the simplecv logo, and that the circle is
not in the center. Well this was because we specified the dimensions of
the circle layer to be the same as the lenna image, not the simplecv logo.
To demostrate let’s make a new circle, this time red on the simplecv logo.

>>> redcircle = DrawingLayer((scv.width, scv.height))
>>> redcircle.circle((10,10), 10, color=Color.RED) #add circle point 10,10, radius 10.
>>> scv.addDrawingLayer(redcircle)
>>> scv.applyLayers()
>>> scv.show()

Now you should see something like:

[image: ../_images/display-simplecv-circle.png]

Now we can take that same layer and add it to the lenna image.

>>> lenna.addDrawingLayer(redcircle)
>>> lenna.applyLayers()
>>> lenna.show()

Should now give an image simliar to:

[image: ../_images/display-lenna-circle.png]

Now, let’s say that we just want our original image. It’s as simple as
running

>>> lenna.clearLayers()
>>> lenna.show()

And you should now have the original lenna image back.

Marking up the Image

There are various ways to notify a user when something occurs on the image.
Built into SimpleCV are a small number of ways to notify a user when say
a particular feature is found. A good example would be to draw a box around
a face in a picture when face detection is being ran to know that the program
had actually found a face. Or maybe you want to just show those interesting
features in a image. For example we will show the corners found in the
standard lenna image.

>>> img = Image('lenna')
>>> corners = img.findCorners()
>>> corners.draw()
>>> img.show()

You should get something that looks like:

[image: ../_images/display-lenna-corners.png]

Notice the green circles. They are to show use where the corner algorithm
had found everything. SimpleCV also allows you to put these various type
of draw objects such as, rectangle, circle, etc. on screen to notify
the user something has occured. The draw method used in the last example
is just a very quick and automatic way to display these found features.

In the last example, we learned how to get the drawing layer so we can
mark it up. In that example we just displayed a circle on the screen.
It’s as easy as:

>>> img = Image('simplecv')
>>> img.dl().circle((10,10), 10, Color.RED)
>>> img.show()

And you should have something similiar to:

[image: ../_images/display-simplecv-circle-corner.png]

Drawing a rectangle is almost identical:

>>> img = Image('simplecv')
>>> img.dl().rectangle((10,10), (10,10), Color.RED)
>>> img.show()

It is also possible to draw curve’s, or more commonly refered to as
bezier curves. These are basically just a set of points that can make
up a line. We will randomly generate a list of points then plot them.

>>> img = Image('simplecv')
>>> points = []
>>> for p in points: points.append((p, p ** 2))
>>> img.dl().bezier(points, 3, Color.RED)
>>> img.show()

and you should get something similiar to:

[image: ../_images/display-simplecv-curve.png]

The list was randomly generated, but any set of points could have been
used. Now we could use this to draw shapes, although, there is a better
function built in to peform this type of task. We typically refer to
shapes as circle’s, square, triangle, etc. But more generally these
are refered to as a polygon. To draw them in SimpleCV we just call
the polygon function on the drawing layer.

>>> img = Image('simplecv')
>>> points = [(10,10),(30,20),(50,10),(40,50),(10,40)]
>>> img.dl().polygon(points, filled=True, color=Color.RED)
>>> img.show()

You should get an image similiar to:

[image: ../_images/display-simplecv-polygon.png]

Notice how we specified the filled option. You could manually define
points to say make a certain shape pop up when something either passes
or fails.

Text and Fonts

Displaying text on the screen is extremely easy in SimpleCV. Typically
text is much more useful to display than say an object on the screen.
Although there are instances were the latter is more useful. For example
in the previous corner detection example, we want to know where the corners
are located, it is much easier to draw them at their actual cordinates than
say printing their coordinates to the screen. Now text maybe more useful
in a case where the status may not be so binary in nature. In a manner
of speaking, a corner is either found or not, but maybe we want to know
how many corners were found overall. This is where displaying text comes
in way more useful. In fact let’s code that up.

>>> img = Image('lenna')
>>> corners = img.findCorners()
>>> num_corners = len(corners)
>>> txt = "Corners Found:" + str(num_corners)
>>> img.drawText(txt)
>>> img.show()

and you should get an image similiar to:

[image: ../_images/display-lenna-text-corners.png]

Another thing you are able to do with SimpleCV is set the font’s to
be some other type of font. To see what fonts are available you just
use the command:

>>> img = Image('simplecv')
>>> img.dl().listFonts()
[u'liberationserif',
 u'dejavuserif',
...
 u'purisa',
 u'ubuntu']

The above example has been shorted but you can see there is a big list.
You may notice the u’FONT’. This is just specifying the string is encoded
in unicode. We can then use this list of fonts to pick one to use to display
text. For convience we’ll just use one of the last ones on the list,’purisa’.
Notice the u’ wasn’t included. This is due to the fact that the
unicode part of the string isn’t required, although can be included if wanted.

>>> img = Image('lenna')
>>> img.dl().selectFont('purisa')
>>> img.drawText("Hello!")
>>> img.show()

This should give something like:

[image: ../_images/display-lenna-font-purisa.png]

Now, let’s say we want to draw some text on the image, but in this case
we want it to be partially transparent so we can see what is going on
behind it. And in fact we’ll use the same polygon example, except this
time we’ll make it partly transparent.

>>> img = Image('simplecv')
>>> points = [(10,10),(30,20),(50,10),(40,50),(10,40)]
>>> img.dl().setLayerAlpha(5)
>>> img.dl().polygon(points, filled=True, color=Color.RED)
>>> img.show()

You should get something similiar to:

[image: ../_images/display-lenna-font-purisa.png]

Making a custom display object

This example we are going to display a Walk or Don’t Walk type scenario.
In the example we just detect if light has been shown to the camera.
This could maybe be used to warn pedistarians if a car is coming down
the street. To do this we use the following code:

from SimpleCV import *

cam = Camera()
img = cam.getImage()
display = Display()
width = img.width
height = img.height
screensize = width * height
divisor = 5 # used for automatically breaking up image.
threshold = 150 # color value to detect blob is a light

def stoplayer():
 newlayer = DrawingLayer(img.size())
 points = [(2 * width / divisor, height / divisor),
 (3 * width / divisor, height / divisor),
 (4 * width / divisor, 2 * height / divisor),
 (4 * width / divisor, 3 * height / divisor),
 (3 * width / divisor, 4 * height / divisor),
 (2 * width / divisor, 4 * height / divisor),
 (1 * width / divisor, 3 * height / divisor),
 (1 * width / divisor, 2 * height / divisor)
]
 newlayer.polygon(points, filled=True, color=Color.RED)
 newlayer.setLayerAlpha(75)
 newlayer.text("STOP", (width / 2, height / 2), color=Color.WHITE)

 return newlayer

def golayer():
 newlayer = DrawingLayer(img.size())
 newlayer.circle((width / 2, height / 2), width / 4, filled=True, color=Color.GREEN)
 newlayer.setLayerAlpha(75)
 newlayer.text("GO", (width / 2, height / 2), color=Color.WHITE)

 return newlayer

while display.isNotDone():
 img = cam.getImage()
 min_blob_size = 0.10 * screensize # the minimum blob is at least 10% of screen
 max_blob_size = 0.80 * screensize # the maximum blob is at most 80% of screen
 blobs = img.findBlobs(minsize=min_blob_size, maxsize=max_blob_size) # get the largest blob on the screen

 layer = golayer()

 #If there is a light then show the stop
 if blobs:
 avgcolor = np.mean(blobs[-1].meanColor()) #get the average color of the blob

 if avgcolor >= threshold:
 layer = stoplayer()

 img.addDrawingLayer(layer)
 img.show()

When it’s okay to walk you should get an image similiar to:

[image: ../_images/display-example-go.png]

and when it’s not okay to walk you should get an image similiar to:

[image: ../_images/display-example-stop.png]

Keep in mind that lighting conditions maybe different in your environment
so you may have to play around with the threshold values to get it to be
more accurate. Even though a train detector seems silly, this example
could easily be ported to do something else, it was just meant to show
how you can easily mark up the display with useful information.

 Kinect

Kinect

It is possible to use the Xbox kinect with SimpleCV.
This makes it much easier to filter things out of the image based on
depth. It is possible get a 3D image from two cameras (called Stereopsis)
just as how humans see objects with their eyes. Unfornately this method
is very computationally intensive, which means without a powerful computer
you probably won’t be able to do it in real time.

The xbox significantly helps solve that computational problem by using
infrared dots in the image to do some detection of the depth.

In the first example we will do exactly that, just load up the kinect
and then get the depth image, where black is closer to the camera, and white
is further away.:

from SimpleCV import *
cam = Kinect()

while True:
 depth = cam.getDepth()
 depth.show()

Download the script

You should get an image similiar to:

[image: Photo of SimpleCV Shell]

There is a little trick SimpleCV does to make the depth image play nice is
converts it to a greyscale image. So normally the depth image is 11bit depth
and a greyscale image is 8 bit depth. A greyscale image has a color from
0 to 255. This is just like a color image, except a color image has three
channels that go from 0-255, and a greyscale only one. What this means is
if you have 640 by 480 pixel image, each pixel on that image will be represent
with a number between 0 and 255.

For us this becomes useful because SimpleCV converts it from 11bit depth to 8bit
depth so you can treat the image just like a greyscale image. This is useful
as mentioned before, for things like filtering on depth. We can use a normal
image manipulation function to filter items out. In our case we will use the
stretch() function to “stretch” the image pixel color from the filter values.

So lets make an example, where we filter out things that are further away.
To do this just add the following to the loop so you have:

while True:
 depth = cam.getDepth()
 filtered = depth.stretch(0,150)
 depth.show()

As you can see things in the distance are no longer in the picture.

Note

If you want 11 bit depth for higher accuracy you can use cam.getDepthMatrix(), although keep in mind that standard image functions no longer work

 Macro’s

Macro’s

SimpleCV has the ability to use macro’s built in.

If you aren’t familiar with a macro, it’s basically a way
to define a set of programming events to happen with just
using a single command.

In our case our macro’s will be built off the history of commands
that we use in the shell. This helps us test things that work, and what
doesn’t.

Remember how to load an image, find the blobs and show the image?

>>> img = Image("lenna")
>>> blobs = img.findBlobs()
>>> if blobs:
 blobs.draw()
>>> img.show()

What happened there is we showed the image, but maybe we want to do that same
type of functionality but for different images.

We will reduce this:

blobs = img.findBlobs()
if blobs:
 blobs.draw()
img.show()

To a single command like:

>>> showblobs

To do this, we can create a macro. If you type the command:

>>> history

You should get an output similiar to:

3: img = Image("lenna")
4: blobs = img.findBlobs()
5:
if blobs:
 blobs.draw()
6: img.show()
7: _ip.magic("history ")

Note

you can tap up or down on the arrow keys to cycle through history as well

What you can see there is all the previous commands we have ran.
But in our case we want to build that into a macro. To do this we want
lines 4,5, and 6 from the history, so to convert those into a macro it’s
as easy as:

>>> macro showblobs 4-6

It’s just macro name lines.
Then to run it you just use:

>>> showblobs

You will see the same thing as before, but now we can change
the image quickly and run it again.

>>> img = Image("simplecv")
>>> showblobs

This was pretty straight forward. But say we want to change
the color of the blobs shown in our macro. Then we need to use the macro
If you aren’t familiar with using VI then it is recommended you read
editor manual here:
http://www.unix-manuals.com/tutorials/vi/vi-in-10-1.html

To edit our existing macro we just type:

>>> edit showblobs

and you should get something similiar to:

blobs = img.findBlobs()
if blobs:
 blobs.draw()
img.show()

We can just edit the blobs.draw() function so it reads:

>>> blobs.draw(autocolor=True)

Press ESC
Then press ** ctrl + :**
Then type ** w + enter **
to save (write) the macro.

Press ESC
Then press ** ctrl + :** once again,
then type ** q + enter **
to quit the macro editor.

Now if you type:

>>> showblobs

You will get the image, but the blobs will be multicolored.
This was just a very small intro into macros. As you can see
they make writing code even faster and easier.

If you would like to learn more about macros just type:

>>> macro ?

 Segmenting the Image and Morphology

Segmenting the Image and Morphology

Typically in computer vision you need to be able to extract or define
something from the rest of the picture. For example detection a person
from a background. This is typically called segmentation. You are basically
breaking the image up into chunks or segments in which you can do more processing
on.

Let’s start with an example, we will use a picture of a face:

[image: lenna]

Let’s say we want to just do some vision processing on her face. In this
case we want to crop out that section of the image.

>>> lenna = Image("lenna")
>>> face = lenna.crop(200,200,200,200)
>>> face.show()

and you should see something like:

[image: lenna cropped]

While this method of extracting the face is ok if you know the
coordinates of the face, with SimpleCV you have the possibility
to automate the task of finding segments in a picture. In this
case we want to find a face:

>>> segment = HaarCascade("face.xml")
>>> autoface = lenna.findHaarFeatures(segment)
>>> if (autoface is not None):
>>> face = autoface[-1].crop()
>>> face.show()

Now with this we can do some interesting things. For instance maybe
we want to zoom into the face to see better detail on it. This makes it
three times the size of the original:

>>> bigface = face.scale(3)
>>> bigface.show()

Or maybe you want to rotate the image 90 degrees:

>>> rotated = lenna.rotate(90)
>>> rotated.show()

Something else that is commonly used is called a warp, or shear. You can
think of this as looking at an image from a perspective.

>>> warped = lenna.warp(((100,10),(300,10), (450,300), (10,300)))
>>> warped.show()

And should get an image similar to:

[image: lenna cropped]

Or if we want the negative of the image, we just invert it:

>>> inverted = lenna.invert()
>>> inverted.show()

The image should be similiar to:

[image: lenna inverted]

Binary images are just that. As mentioned greyscale images have a single
channel, and color images have three channels (RGB). Each channel ranges
from 0 to 255. What we do when we create a binary images is either push
those values one way or the other. You can think of the images as something
like the famous ink blot test. For instance looking at the face in this way.

[image: lenna binarized]

To explain a little more in detail, a binarize takes a greyscale image, and
pushes the color one way or another. Let’s first get our greyscale image.

>>> grey = lenna.greyscale()
>>> grey.show()

and you should have something like:

[image: lenna grey]

That is the single channel image between 0-255. In fact, that’s all an image
really is, just a matrix of pixels between 0 and 255. To see what we are
talking about, let’s actually grab that matrix.

>>> matrix = grey.getNumpy()
>>> print matrix

and you should have output similiar to:

array([[[162, 162, 162],
 [162, 162, 162],
 [162, 162, 162],
 ...
 [98, 98, 98],
 [108, 108, 108],
 [108, 108, 108]]], dtype=uint8)

As you can see those are the pixel values. And if we want to access the
pixel at the X,Y coordinate of 0,0, then now we can just do:

>>> print matrix[0][0]
>>> array([162, 162, 162], dtype=uint8)

So you can see it has the pixel value of 162. This matters in the case
of using a binarize as mentioned before it can be used to push the value
up or down based on a given threshold. The threshold we will use in this
case is 127 as that is value for binarize. What happens in this
case is that the code runs through the matrix and says if the value is
greater than the threshold, then make it black (0) otherwise make it
white (255). In our instance we have 162 > 127 so that pixel will go to
black, and if the pixel value was say 90 then it would go to white.

If you view the image you will see that the pixels in those coordinates
are black. But let’s actually show that is what is going on behind the
scenes. So we will print the grey matrix, then binarize, then print the
matrix again and you will see the values have changed.:

>>> matrix = lenna.getNumpy()
>>> print matrix
array([[[226, 137, 125],
 [226, 137, 125],
 [226, 137, 125],
 ...,
 [177, 62, 79],
 [185, 74, 81],
 [185, 74, 81]]], dtype=uint8)
>>> binarize = lenna.binarize()
>>> binarize_matrix = binarize.getNumpy()
>>> print binarize_matrix
array([[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
...,
[255, 255, 255],
[255, 255, 255],
[255, 255, 255]]], dtype=uint8)

As you can see the values have changed to 0 and if you compare the original
lenna image to the binarized version you will see this is also true.

As mentioned in the previous section, we were using a threshold of 127.
But where did we set it? Well actually we didn’t and this was intentional.
The reason being that we wanted to talk a little bit about dynamic vs. fixed
thresholds. In our example above we are using a dynamic threshold, where
as using the number 127 is a fixed threshold. The fixed is just that, fixed
at the value. This maybe good if you are trying to use computer vision
where you need segmentation and the image doesn’t change much. Then you
can really tweak the threshold value to really bring out parts of the image
you are looking for.

Now dynamic thresholding is a bit more complex, but it is also adaptive,
so if the scene changes then you don’t adjust your image may just appear
completely white or black. Typically dynamic thresholding is used and
then fine tuned with fixed. To use them it’s just:

>>> lenna.binarize() #dynamic
>>> lenna.binarize(127) #fixed

[image: ../_images/lenna-binarize-fixed.png]
Fixed Thresholding

[image: ../_images/lenna-binarize.png]
Dynamic Thresholding

Another useful function is dilate. This would be used to basically make
things grow.

>>> dilated = lenna.dilate(10)
>>> dilated.show()

[image: ../_images/lenna-dilate.png]

Erode is basically the opposite of dilate. You can think of it just like
soil erosion on the ocean, that it basically wears away at the image

>>> eroded = lenna.erode(10)
>>> eroded.show()

[image: ../_images/lenna-eroded.png]

There is also morphOpen, which operates similiar to dilate, except it
takes surrounding pixels into account. As you can this is much more subtle
and seems to be more of blending effect.

[image: ../_images/lenna-morphopen.png]
Morph Open

[image: ../_images/lenna-morphclose.png]
Morph Close

[image: ../_images/lenna.png]
Original Image (for reference)

To do these operations it’s just:

>>> open = lenna.morphOpen()
>>> open.show()
>>> closed = lenna.morphClose()
>>> closed.show()

 SimpleCV Shell

SimpleCV Shell

The shell is the first place you will get started playing around with
SimpleCV. This is because everything is already loaded up for you and
is ready to begin to be your playground to develop full applications.

Starting the shell maybe different depending on what operating system you
are on. If you are on Windows there should be a shortcut on your desktop.
On Mac or Ubuntu you should just be able to type simplecv from the shell.:

$ simplecv

If this isn’t working then you can do it the standard way that should work
regardless of what Operating system you are on.

If you can’t find or get the launcher working, this is the manual way to
start the shell.

Open the python shell, if you are on Windows it should be somewhere in the
program files if you just look around, and on Mac and Ubuntu you should be
able to start it just by typing python.

You should see something like:

$ python
Python 2.7.3 (default, Aug 9 2012, 17:23:57)
[GCC 4.7.1 20120720 (Red Hat 4.7.1-5)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from SimpleCV import Shell
>>> Shell.main()

That in turn should launch something that looks like the following:

+---+
 SimpleCV 1.3.0 [interactive shell] - http://simplecv.org
+---+

Commands:
 "exit()" or press "Ctrl+ D" to exit the shell
 "clear" to clear the shell screen
 "tutorial" to begin the SimpleCV interactive tutorial
 "example" gives a list of examples you can run
 "forums" will launch a web browser for the help forums
 "walkthrough" will launch a web browser with a walkthrough

Usage:
 dot complete works to show library
 for example: Image().save("/tmp/test.jpg") will dot complete
 just by touching TAB after typing Image().

Documentation:
 help(Image), ?Image, Image?, or Image()? all do the same
 "docs" will launch webbrowser showing documentation

SimpleCV:1>

If you can’t get to the shell, then head on over to the help forum at:
http://help.simplecv.org

Getting Help Right in the Shell

No joke, you can literally get help right in the shell. There is a built-in
help system with search. Remember, just press ‘q’ to quit the help mode at
any time while you are in it and you will just right back to the shell.

To see what is available just type:

SimpleCV:1> help(SimpleCV)

The output from that command should look like:

Help on package SimpleCV:

NAME
 SimpleCV

FILE
 /usr/lib/python2.7/site-packages/SimpleCV/__init__.py

PACKAGE CONTENTS
 Camera
 Color
 ColorModel
 Display
 DrawingLayer
 EXIF
 Features (package)
 Font
 ImageClass
 MachineLearning (package)
 Segmentation (package)
 Shell (package)
 Stream
 base
 tests (package)

SUBMODULES
 Detection
 __init__

You can get help from on any of the listed libraries. If you’re just starting
out, Image is a great place to start.

To view the Image help, type:

SimpleCV:1> help(Image)

The output should be similiar to before:

Help on class Image in module SimpleCV.ImageClass:

class Image
 | **SUMMARY**
 |
 | The Image class is the heart of SimpleCV and allows you to convert to and
 | from a number of source types with ease. It also has intelligent buffer
 | management, so that modified copies of the Image required for algorithms
 | such as edge detection, etc can be cached and reused when appropriate.
 |
 |
 | Image are converted into 8-bit, 3-channel images in RGB colorspace. It will
 | automatically handle conversion from other representations into this
 | standard format. If dimensions are passed, an empty image is created.
 |
 | **EXAMPLE**
 |
 | >>> i = Image("/path/to/image.png")
 | >>> i = Camera().getImage()
 |
 |
 | You can also just load the SimpleCV logo using:
 |
 | >>> img = Image("simplecv")
 | >>> img = Image("logo")
 | >>> img = Image("logo_inverted")
 | >>> img = Image("logo_transparent")
 |
 | Or you can load an image from a URL:
 |
 | much more here ...

Note

The shell is case senstive, so typing help(simplecv) won’t work.
Instead, you need to type help(SimpleCV). This case sensitivy
applies to all of the other topics as well.

 Loading and Saving Images

Loading and Saving Images

First thing we are going to do is load an image:

>>> logo = Image("simplecv")

That line of code will load the SimpleCV logo into memory. Now we want to see it:

>>> logo.show()

What you should see is:

[image: Photo of SimpleCV Logo]

Now let’s save the logo:

>>> logo.save("my-image.png")

That saved the image to disc in the same directory you started python from you can always type:

>>> pwd
'/home/xamox/Code/simplecv-examples'

That was the “print working directory” command. You should be able to navigate to that location on your computer and see a file called my-image.png.

You can also specify saving images such as:

>>> logo.save("path/to/img.png")

To load an image, specify the file path in the constructor:
>>> my_image = Image(“path/to/image.jpg”)

Getting an Image from the Camera
As long as your camera driver is supported then you shouldn’t have a problem. This means you should be able to open your webcam software in other software it should more than likely work with SimpleCV.

To load the camera just type:

>>> cam = Camera()

Then to grab an image from the Camera we type:

>>> img = cam.getImage()

We now have an image loaded into memory and just as before if we want to display it, we just type:

>>> img.show()

You can also save it, etc.
Note: There is a list of supported web cams on the wiki.

You can once again run help if you don’t know what to do with that image.

>>> help cam

This will output:

Help on instance of Camera in module SimpleCV.Camera:

class Camera(FrameSource)
 The Camera class is the class for managing input from a basic camera. Note
 that once the camera is initialized, it will be locked from being used
 by other processes. You can check manually if you have compatable devices
 on linux by looking for /dev/video* devices.

Note: Remember to type ‘q’ to quit the interactive help mode in the SimpleCV shell.

Image Manipulation

Now that we can easily load and save images. It’s time to start doing some image processing with them. Let’s make our picture a thumbnail:

>>> thumbnail = img.scale(90,90)
>>> thumbnail.show()

This will show a scaled down version of the image.

Now let’s erode the picture some:

>>> eroded = img.erode()
>>> eroded.show()

It should look almost as the picture was made of ink and had water spilled on it. Let’s crop a section of the image out:

>>> cropped = img.crop(100,100,50,50)
>>> cropped.show()

What that did is went from the coordinate in (X,Y), which is (0,0) and is the top left corner of the picture. We basically said move to coordinates (100,100) in the (X,Y) and crop a picture from that which is 50 pixels by 50 pixels.
Now you maybe asking how are you suppose to know what parameters to put into the crop() function, or even that the crop function exist. Well remember good old help? It also works for functions. So since image is an Image, than you can type ‘help img’, and get the help for that. To learn what crop needs as input.

>>> help img.crop

This will output:

Help on method crop in module SimpleCV.ImageClass:

crop(self, x, y=None, w=None, h=None, centered=False) method of SimpleCV.ImageClass.Image instance
 Crop attempts to use the x and y position variables and the w and h width
 and height variables to crop the image. When centered is false, x and y
 define the top and left of the cropped rectangle. When centered is true
 the function uses x and y as the centroid of the cropped region.

Features

Features are things you are looking for in the picture. They can be blobs, corners, lines, etc. Features are sometimes referred to as a fidicual in computer vision. These features are something that is measureable, and something that makes images unique. Features are something like when comparing things like fruit. In this case our features could be the shape and the color, amongst others.
What features are in SimpleCV is an abstract representation of that. You take your image, then perform a function on it, and get back features or another image with them applied. The crop example is a case where an image is returned after we perform something to do.
In a simple example we will use the famous “lenna” image, and find corners in the picture.

>>> img = Image("lenna")
>>> img.findCorners()

Which should give you an output like:

<SimpleCV.Features.Detection.Corner object at 0x3d5f950>,
<SimpleCV.Features.Detection.Corner object at 0x3d5f990>,
<SimpleCV.Features.Detection.Corner object at 0x3d5f9d0>,
<SimpleCV.Features.Detection.Corner object at 0x3d5fa10>,
<SimpleCV.Features.Detection.Corner object at 0x3d5fa50>]

This means we found blobs, but we didn’t store that information anywhere. What is happening is it is “returning” the blobs. So to do that we just use:

>>> img = Image("lenna")
>>> blobs = img.findBlobs()
>>> img.show()

Well, this time nothing will be printed as instead of the return it gets stored in the variable ‘blobs’. But when we show the image we haven’t noticed anything different to the image. Well this is because we have to actually tell the blobs to draw themselves on the image.

>>> img = Image("lenna")
>>> blobs = img.findBlobs()
>>> blobs.draw()
>>> img.show()

The image should have went from this:

[image: Photo of Lenna]

Now you should get an image close to the following:

[image: Photo of Lenna]

You will see the green blobs filled in. There is also a little trick built into SimpleCV to do this even faster:

>>> img = Image("lenna")
>>> img.findBlobs().show()

That’s it. It should automatically draw the green on the blobs as well. But you may notice that it’s all green, and maybe we want to see all the blobs separately. Easy.

>>> img = Image("lenna")
>>> img.findBlobs().show(autocolor=True)

Then you should get an image more like this:

[image: Photo of Lenna]

Color

Did you notice in the previous example how we could change the color when we draw? Well there are times when we want to detect color as well. This is represented in SimpleCV as an object. Why? Well typically color is used in the common format Red-Green-Blue (RGB). This can also be represented as as ‘tuple’ in SimpleCV like (R,G,B). Each of those color channels have a value between 0 and 255. So the color black is: (0,0,0), the color white is (255,255,255). As you can imagine the RGB for the color Red is the red channel all the way up and the others with no value. So red is (255,0,0). But, this would get hard to remember after time, or for instance, how do you make orange? Well orange is red and yellow mixed, but what would the tuple be?
Luckily SimpleCV has tried to make this much easier with built in maps for these tuple values. To confirm this just type:

>>> Color.BLACK
>>> (0,0,0)

As you can see the color define is basically a map to that tuple color, but just makes it easier for us to remember. You can also get the list of colors by using the help command:

>>> help Color

You should get an output similiar to:

Help on class Color in module SimpleCV.Color:

class Color
 Color is a class that stores commonly used colors in a simple
 and easy to remember format, instead of requiring you to remember
 a colors specific RGB value.

 To use the color in your code you type:
 Color.RED

 To use Red, for instance if you want to do a line.draw(Color.RED)

 Methods defined here:

 getRandom(self)
 Returns a random color in tuple format

 --
 Data and other attributes defined here:

 AQUAMARINE = (127, 255, 212)

 AZURE = (0, 127, 255)
 .
 .
 .
 more

ColorCurve is a color spline class for performing color correction. It can take as parameters a SciPy Univariate spline, or an array with at least 4 point pairs. Either of these must map in a 255x255 space. The curve can then be used in the applyRGBCurve, applyHSVCurve, and applyInstensityCurve functions:

>>> img = Image("lenna")
>>> clr = ColorCurve([[0,0], [100, 120], [180, 230], [255, 255]])
>>> img.applyIntensityCurve(clr)

A color map takes a start and end point in 3D space and lets you map a range of values to it. Using the colormap like an array gives you the mapped color.
This is useful for color coding elements by an attribute:

>>> blobs = image.findBlobs()
>>> cm = ColorMap(color = Color.RED, startmap = min(blobs.area()) , endmap = max(blobs.area()))
>>> for b in blobs:
 b.draw(cm[b.area()])

 Image Arithmetic

Image Arithmetic

As we discussed before, images are basically just matrices of pixel values
that range from 0 to 255. And since they are built in this format, it is
actually easy to perform arithmetic (math) on images, such as addition or
subtraction.

There are many uses for performing image math. For the first example
we will show what happens when we add two images together.

>>> imgA = Image("simplecv")
>>> added = imgA + imgA
>>> added.show()

So what we did was take the original simplecv image logo that looked like

[image: ../_images/simplecv-logo.png]

and converted so it looked like this:

[image: ../_images/image-math-add.png]

If you note that since (X + X = X * 2) we can also try this as well.

>>> imgA = Image("simplecv")
>>> mult = imgA * 2
>>> mult.show()

You should get the same exact image as shown before.
You can also perform subtraction. Except what is different here, is that
using subtraction will only show what has changed between the two images.

>>> logo = Image("logo")
>>> sub = logo - logo
>>> sub.show()

You should get a completely black image.

..note: To perform image math the images have to be the same exact size

It is also possible to perform division on images. This is useful for
lowering the contrast. For instance if you use the SimpleCV logo:

[image: ../_images/simplecv-logo.png]

And if we divide the image by 10:

>>> scv = Image("simplecv")
>>> div = scv / 10
>>> div.show()

and you should get something that looks like:

[image: ../_images/image-math-div.png]

Now you maybe asking when image math is actually useful. Well let’s give
a quick example. We will show how simple subtraction can be used to
detect motion. In this example we have a picture of a person, then the
next picture you can tell they waved their hand. Then we will subtract
those two images and you will only what has changed between the two
images.

[image: ../_images/image-math-person1.png]
Previous Frame

[image: ../_images/image-math-person2.png]
Current Frame

[image: ../_images/image-math-person-sub.png]
Difference Image

As seen above only the pixels that changed between the two images are
shown. To perform a similiar example just do:

>>> cam = Camera()
>>> prev = cam.getImage()
>>> current = cam.getImage()
>>> diff = current - prev
>>> diff.show()

But how does that tell us that motion occured? Well we can use some
basic math to figure that out. We know if the pixel value was black (0)
then nothing had changed, but if not black, then something must have
changed. We will compute how much of the entire picture actually changed.

To do this we will just get the image matrix and add a counter:

>>> area = diff.width * diff.height
307200 #this is our image area in pixels
>>> matrix = diff.getNumpy()
>>> matrix.shape
(640, 480, 3)
>>> flat = matrix.flatten()
>>> counter = 0
>>> for i in flat:
 if flat[i] == 0: #if black
 counter += 1

>>> percent_change = float(counter) / float(len(flat))
>>> print percent_change
0.818358289930555

With this you are able to determine about 0.8 or 80% change in pixels.
Although this is not the most efficient way we can now use this change
as a threshold value. For instance send an e-mail if 90% of the pixels
change, and using a threshold you can minimize the chance of false positives
happening.

As mentioned this probably isn’t the most effecient way to determine if
motion has occured, but it is probably the most basic method and was just
meant to show how you can use image math to do some basic useful things.

We can also use other properties of the image. For instance any standard
type of mathematic statistics functions are available. This could be mean,
standard deviation, etc. As in the previous example we could instead use
the mean which is much quicker.

Let’s use that in a complete program below:

from SimpleCV import *

cam = Camera()
threshold = 5.0 # if mean exceeds this amount do something

while True:
 previous = cam.getImage() #grab a frame
 time.sleep(0.5) #wait for half a second
 current = cam.getImage() #grab another frame
 diff = current - previous
 matrix = diff.getNumpy()
 mean = matrix.mean()

 diff.show()

 if mean >= threshold:
 print "Motion Detected"

Download the code

Exceptions in Image Math

In image math you will never have a negative number. This is because
values will push the value. The values can be between 0 and 255, no more
no less.

Examples:

200 - 255 = 0
100 + 200 = 255
0 + 300 = 255

If we remember, that color or greyscale still uses the 0 to 255 value.
And keep in mind that white is all colors, and black is the absence of
color. So if you were to add say a completely blue image to a white image
the image would still be white, because:

white = (255,255,255)
blue = (0, 0, 255)
white + blue = (255, 255, 255)

And in fact you can verify this with the following code:

>>> black_img = Image((20, 20)) #make a 20 x 20 pixel black image
>>> black_img.show()
>>> blue_img = Image(black_img.getNumpy() + Color.BLUE)
>>> blue_img.show()
>>> white_img = black_img.invert()
>>> white_img.show()
>>> added_img = white_img + blue_img
>>> added_img.show()

Histograms

Another extremely useful tool when performing math on images is to use
a histogram. A histogram is what is typically used in statistics, and
is basically just a plot of the values in a list. These values can
be anything really, from a list of the area of features found, to coordinates,
etc. But what typically histograms are used for is a list of all the colors
from each of the color channels in an image.

Earlier we talked about colors ranging from 0 to 255. And this is per channel
on a grey image the same color is used across all channels. For instance
let’s take a look at the histogram of the simplecv logo in grey.:

>>> img = Image('simplecv')
>>> gray = img.toGray()
>>> histogram = gray.histogram()
>>> len(histogram)
50
>>> print histogram
[1929,
 2562,
 ...
 0,
 2372]

This was a list of values as a frequency of their occurance in the image.
In this case there are 50 values in this list. These are referred to as
bins. You can change the number of bins by passing it as a value. For
instance if we want to show all 255 values then just use.:

>>> histogram = gray.histogram(255)
>>> len(histogram)
255

Now we want to see what that actually looks like so we will plot it.

>>> plot(histogram)

and you should see an image similiar to.

[image: ../_images/simplecv-histogram.png]

Histogram of SimpleCV logo in Gray

If you look at the above image you will see basically the distribution
of the colors plotted. Since the image is gray, then you will notice a
high frequency of occurances near the black (0) and white (255) end of
the histogram, with not much in the middle. To verify this, let’s do
the same plot with the color image to see the differences. But we also
have to plot each color channel seperate, so Red, Green, and Blue all
range from 0 to 255.

>>> img = Image('simplecv')
>>> (red, green, blue) = img.splitChannels(False)
>>> red_histogram = red.histogram(255)
>>> green_histogram = green.histogram(255)
>>> blue_histogram = blue.histogram(255)

[image: ../_images/simplecv-histogram-red.png]

Histogram of SimpleCV logo Red Color Channel

[image: ../_images/simplecv-histogram-green.png]

Histogram of SimpleCV logo Green Color Channel

[image: ../_images/simplecv-histogram-blue.png]

Histogram of SimpleCV logo Blue Color Channel

Color Space

Something that hasn’t been talked about too much is the idea of color space.
Basically this is the method used to describe color. The most commonly used
and well known color space is Red-Green-Blue (RGB). It’s similiar to something
you may have seen in art class called the color wheel.

[image: ../_images/color-wheel.png]

Image of Color Wheel

What color space is basically the way you figure out the color. For instance
in RGB color space to get the color blue, it’s just (0,0,255) for the RGB values.
There are many other ways to describe color. Another popular method is
called Hue-Saturation-Value (HSV). This is another method to represent blue for
instance, and it’s value in HSV is (240,100,100). Lets look at an example.:

>>> img = Image('simplecv')
>>> hsv = img.toHSV()
>>> histogram = hsv.histogram(255)
>>> print histogram
[34, 209, 408, 602, 676, 0, 688, 680, 603, 591, 485, 0, 546, 603, 677,
743, 0, 815, 689, 536, 317, 187, 0, 101, 56, 26, 12, 0, 10, 8, 5, 5, 4,
0, 0, 0, 2, 0, 0, 3, 4, 9, 10, 12, 0, 5, 4, 0, 0, 0, 0, 1, 3, 2, 0, 0,
7, 12, 10, 6, 0, 10, 10, 5, 2, 1, 0, 0, 1, 0, 0, 3, 0, 8, 13, 18, 16, 0,
4, 5, 1, 0, 2, 0, 9, 3, 3, 2, 0, 2, 21, 13, 15, 21, 0, 28, 3, 6, 2, 0,
0, 0, 0, 7, 6, 0, 11, 17, 15, 14, 0, 6, 2, 5, 27, 11, 0, 0, 0, 0, 0, 0,
18, 22, 38, 66, 15, 0, 1, 3, 1, 1, 0, 0, 18, 19, 1, 1, 0, 12, 26, 34, 14,
14, 0, 42, 2, 0, 0, 0, 0, 0, 0, 0, 11, 0, 59, 33, 13, 8, 0, 1, 0, 0, 0, 4,
0, 0, 0, 0, 0, 0, 4, 23, 21, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22,
20, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 76, 22, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 33, 16, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7,
0, 37, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1135, 1237]
>>> plot(histogram)

As you can see the values are quite a bit different than the same image’s
histogram using the RGB color space.

[image: ../_images/simplecv-histogram-hsv.png]

Histogram of SimpleCV logo using HSV colorspace

Now many of these different color spaces are used for many various things.
In the case of HSV the first value, hue, can be adjusted to basically adjust
the color level, so for instance if you wanted to shift the blue to a light
blue then you can just adjust the hue channel. If you were using RGB color
space, trying to adjust the “lightness” of the blue would require you to
adjust 3 channel values.

For the most part you won’t have to muddle around with other color spaces.
All the image algorithms can work the same in the color spaces, but color
spaces make it easier to optimize for particular tasks. For instance maybe
we wanted to check how blue something was. Using HSV we could easily use
the saturation value as a threshold, so if it was above 80 but below 100. To
do this using RGB would be much more complex.

please visit the wikipedia article if you would like to know more about colorspace:
http://en.wikipedia.org/wiki/Color_space

Using Hue Peaks

The hue peaks function is used to help figure out what the dominant color
in an image is. Using a histogram we can plot the values and see the actual
peaks. What the huePeaks function does it make it convient to find this color.
In this example we will use the lenna image to find the color (or hue) peaks.:

>>> lenna = Image('lenna')
>>> histogram = lenna.hueHistogram()
>>> print histogram
[13682 14520 12393 11312 10730 9966 9128 8128 7309 5738 4115 2624
 1670 1252 1358 2110 2978 2430 1083 230 62 30 18 14
 5 1 2 0 1 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 1 0 1 0 0 0 1 2 1 2
 3 5 7 5 7 14 20 17 11 22 29 37
 45 67 66 72 95 127 133 157 189 223 263 310
 336 459 471 489 571 648 595 761 994 1087 1318 1590
 1897 2357 3120 3674 4432 4480 4876 4798 4699 4292 3575 3055
 2653 2510 2857 3287 4051 4720 5857 7496 9962 12562 26794]
>>> peaks = lenna.huePeaks()
>>> print peaks
[(162.0, 0.0186004638671875)]
>>> plot(histogram)

Hue Histogram of Lenna Picture

[image: ../_images/lenna-histogram-hue-peaks.png]

As you can see, the huePeaks() function list the value of 162, and looking
at the plot you can see there is a peak there. Where this type of function
maybe quite useful is trying to bring out the highest value color in the
picture. To do this just use:

>>> lenna = Image('lenna')
>>> peaks = lenna.huePeaks()
>>> print peaks
[(162.0, 0.0186004638671875)]
>>> peak_one = peaks[0][0]
>>> print peak_one
162.0
>>> hue = lenna.hueDistance(peak_one)
>>> hue.show()

Hue Distance of Lenna Image (blacker means closer to hue peak)

[image: ../_images/lenna-hue-distance.png]

Creating a Motion Blur Effect

Here is a very good example of where you could use image math to add some
effects to a video. Using some of the simple math functions built into
python we can quickly do this to a live stream.

Let’s show the code:

from operator import add
from SimpleCV import *

cam = Camera()

frames_to_blur = 4
frames = ImageSet()

while True:
 frames.append(cam.getImage())

 if len(frames) > frames_to_blur:
 frames.pop(0) #remove the earliest frame if we're at max

 pic = reduce(add, [i / float(len(frames)) for i in frames])
 #add the frames in the array, weighted by 1 / number of frames

 pic.show()

Download the script

Let’s discus what is happening here. We load add from the operator library
so we can ‘add’ the images back together. We set the frames_to_blur to 4, what
this does is set the number of frames to basically blur together. We then
create a ImageSet, this is basically a list of images with some built in
options like mass saving the images in the list or viewing them. We then
run through an infinite loop and keep adding images, if the number of frames
added exceeds the number to blur then remove one from the list.

The reduce function is part of the standard python library. You may want
to look some more into using map and reduce as functions in python as they
are very quick and powerful. In this case we are using the add function
to reduce all the images (or add them together). After they are summed into
a single image they are then shown.

Simulating Long Exposure

Have you ever saw the type of art people can make using long exposure?
Typically the images look something similiar to:

[image: ../_images/light-art.png]

image taken from: http://www.flickr.com/photos/torres21/3688474968/

This is commonly refered to as light art. In this example we are going
to simulate what is happening. Basically it’s just a sum of the images
compressed into a single image.:

from SimpleCV import *

image_directory = "../static/images/exposure/"
frames = ImageSet() #create an empty image set
frames.load(image_directory) #load the directory of images
img = Image(frames[0].size()) #create an initial empty image
num_of_frames = len(frames) #count the number of images

for frame in frames:
 img = img + (frame / num_of_frames) # merge the images together

img.show()
time.sleep(1000)

Download the script

In our example we take a set of images, load them into memory, then run
though that list and compress them. The images directory has about 10
images of a person walking by a wall. We create an imageset to store
images in, this could be a list, but using the built in image set makes
it much easier for us to load. We have to then create a empty image,
this is used as a base to average the rest of the images against. We then
run through the list of frames.

When ran we should get something that looks like:

[image: ../_images/long-exposure.png]

Chroma Key (Green Screen)

We all have seen the weather reporter on television. They stand up in
front of a screen and point to where storms maybe moving in, which direction
the wind is moving, etc. The method they are doing this with is typically
called a green screen. It is also (or used to be) one of the main methods
to insert an actor into a movie or existing footage.

The way this is performed is basic image math, we are basically subtracting
the certain colors we don’t want from that image. In our example we put
our “anonymous” person in front of the green screen.

[image: ../_images/green-screen-person.png]

picture taken from: http://www.flickr.com/photos/pittaya/4785149065/

[image: ../_images/green-screen-wallst.png]

picture taken from: http://www.flickr.com/photos/willemvanbergen/271204700/

We use these pictures to create a mask. And no, pardon the pun, but not the mask
the person is wearing in the picture. A mask has a similiar concept in image processing
and in theory is similiar, you would wear a mask to hide your face, well
a mask in image math is used to hide that part of the image. Our masked
image should look something like:

[image: ../_images/green-screen-masked.png]

To finally get something that looks like:

[image: ../_images/green-screen-result.png]

The code to perform a green screen is:

from SimpleCV import *

sleep_time = 2 #the amount of time to show each image for

#Load and show the greenscreen image
print "Showing Greenscreen image"
greenscreen = Image("../static/images/green-screen-person.png")
greenscreen.show()
time.sleep(sleep_time)

#load and show the background image
print "Showing background image"
background = Image("../static/images/green-screen-wallst.png")
background.show()
time.sleep(sleep_time)

#Create the mask to apply and show the mask
print "Showing Masked Image"
mask = greenscreen.hueDistance(color=Color.GREEN).binarize()
mask.show()
time.sleep(sleep_time)

#Combine the mask and other images to get the final result
print "Showing final image"
result = (greenscreen - mask) + (background - mask.invert())
result.show()
time.sleep(sleep_time)

Download the script

Now performing the mask is similiar to what we did in the previous example
using hue peaks. We used the hue distance to create the image and tell it
to use green as the color, then we use binarize to either make it black
or white as we need that for the image math.:

mask = greenscreen.hueDistance(color=Color.GREEN).binarize()

Now that we have the mask we do the actually image math with it:

result = (greenscreen - mask) + (background - mask.invert())

Here we are removing the mask from the green screen and adding it to
the background with the inverted mask removed. You can think of it
as cutting out a shape from one colored paper, and for it to fit into
the big background piece of colored paper you would also have to remove
that section from the background.

_static/images/lenna.png

_static/images/display-lenna-circle.png

_static/images/parking-no-car-cropped.png

_static/images/green-screen-masked.png

_images/lenna-cropped.png

_images/lenna-blobs.png

_images/parking-no-car-colordiff.png

_static/images/parking-car.png

_static/images/image-math-person-sub.png
St

_images/parking-car-yellow.png

_static/images/lenna-histogram-hue-peaks.png
30000

25000

20000

15000

10000

5000

20 40 60 80 100 120 140 160 180

_images/green-screen-masked.png

_static/images/exposure/1325792156.78.png

_images/lenna.png

_static/images/display-lenna-facebox.png

_images/image-math-div.png

_static/images/exposure/1325792157.01.png

_images/parking-no-car-cropped.png

_static/images/exposure/1325792157.22.png

_static/images/exposure/1325792157.55.png

_static/images/exposure/1325792156.31.png

_images/display-lenna-circle.png

_static/images/exposure/1325792156.66.png

_images/parking-car.png

_static/images/exposure/1325792157.32.png

_static/images/github_grey.gif

_static/images/home-icon-over.jpg

_static/images/lenna-blobs.png

_static/images/image-math-div.png

_static/images/parking-car-yellow.png

_static/images/lenna-cropped.png

_images/lenna-histogram-hue-peaks.png
30000

25000

20000

15000

10000

5000

20 40 60 80 100 120 140 160 180

nav.xhtml

 Table of Contents

 		SimpleCV Tutorial

_images/lenna-inverted.png

_images/green-screen-result.png

_images/simplecv-histogram-red.png
2500

2000

1500

1000

500

50 100 150 200 250 300

_images/simplecv-histogram-hsv.png
1400

1200

1000

800

600

400

200

50 100 150 200 250 300

_images/parking-car-only.png

_static/images/image-math-add.png

_images/lenna-grey.png

_static/images/lenna-warped.png

_images/parking-no-car.png

_static/images/book.png

_images/lenna-colorblobs.png

_static/images/display-lenna-boxcircle.png

_static/images/home-icon.jpg

_static/images/parking-car-colordistance.png

_images/color-wheel.png

_static/images/simplecv-logo.png
VC

_static/images/callout-box-background.gif
% B

7
1177700700000 S SIS SIS IS,

AR

\

_static/images/display-layers-logo.png

_static/images/twitter_blue.gif

_static/images/lenna-binarize.png

_images/simplecv-histogram-green.png
1600

1400

1200

1000

800

600

400

200

0 50 100 150 200 250 300

_images/image-math-person2.png

_images/display-simplecv-circle.png

_images/display-blit.png

_images/display-lenna-corners.png

_images/lenna-dilate.png

_images/display-simplecv-curve.png

_images/simplecv-histogram.png
1400

1200

1000

800

600

400

200

50 100 150 200 250 300

_images/display-simplecv-circle-corner.png

_images/long-exposure.png

_images/display-example-stop.png

_images/display-layers-exploded.png
ma!ayeymiay@

_images/lenna-hue-distance.png

_images/lenna-morphopen.png

_images/green-screen-wallst.png

_images/display-simplecv-polygon.png

_static/images/exposure/1325792156.9.png

_images/display-lenna-text-corners.png

_static/images/exposure/1325792157.11.png

_images/display-example-go.png

_images/lenna-eroded.png

_images/lenna-morphclose.png

_static/images/exposure/1325792156.54.png

_images/lenna-warped.png

_images/image-math-add.png

_images/display-layers-logo.png

_images/lenna-binarize.png

_images/simplecv-logo.png
VC

_images/image-math-person-sub.png
St

_images/display-lenna-boxcircle.png

_images/parking-car-colordistance.png

_images/display-lenna-facebox.png

_static/images/simplecv-histogram-green.png
1600

1400

1200

1000

800

600

400

200

0 50 100 150 200 250 300

_static/images/facebook_blue.gif

_static/images/header-background.jpg

_static/images/display-lenna-corners.png

_static/images/image-math-person2.png

_static/images/lenna-colorblobs.png

_static/images/parking-no-car.png

_static/images/parking-car-only.png

_static/images/videos.png

_static/images/color-wheel.png

_static/images/lenna-grey.png

_images/display-lenna-font-purisa.png

_images/light-art.png

_images/kinect.png

_images/lenna-binarize-fixed.png

_images/green-screen-person.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

_images/simplecv-histogram-blue.png
6000

5000

4000

3000

2000

1000

D S S A

50

100

150 200

250

300

_static/plus.png

_images/image-math-person1.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/images/simplecv-histogram-hsv.png
1400

1200

1000

800

600

400

200

50 100 150 200 250 300

_static/images/simplecv-histogram-red.png
2500

2000

1500

1000

500

50 100 150 200 250 300

_static/images/green-screen-result.png

_static/images/lenna-inverted.png

_static/comment-close.png

_static/images/lenna-histogram-hue.png
16000

14000

12000

10000

8000

6000

4000

2000

50

100

150

200

250

300

_static/images/google_red.gif

_static/up-pressed.png

_static/images/logo.gif
L C 4 SimpleCV

_static/images/octocat.png

_static/images/logo.png
L C 4 SimpleCV

_static/images/simplecv-histogram-blue.png
6000

5000

4000

3000

2000

1000

D S S A

50

100

150 200

250

300

_static/images/lenna-noisy.png

_static/images/green-screen-wallst.png

_static/images/lenna-morphopen.png

_static/images/lenna-morphclose.png

_static/images/lenna-eroded.png

_static/images/simplecv-logo-small.png

_static/images/display-example-go.png

_static/images/display-layers-exploded.png
ma!ayeymiay@

_static/images/gears.png

_static/images/display-lenna-text-corners.png

_static/images/display-simplecv-polygon.png

_static/down.png

_static/up.png

_static/images/light-art.png

_static/images/simplecv-shell.png
